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Highlights 

 The risk of pandemic disease is increasing, in particular the risk of pandemic influenza 

 Investment in preemptive risk mitigation provides economic savings to domestic 

policymakers 

 Investment in both domestic adaptation and capital used abroad for prevention is optimal 

 Excluding humanitarian benefits, a rational self-interested policymaker should provide 

foreign aid as insurance for their own country against pandemics 

 The mixture of investment should respond to the technical relationships between capital 

stocks and risk 

 

 

Abstract 

The risk of pandemics is increasing, driven by changes in human behavior and climate, both of 

which are difficult for policymakers to control. There are two main strategies available for 

reacting to these changes. This paper considers the decision to invest in either adaptation 

(domestic) capital or prevention (foreign) capital before a pandemic in an interval of time when 

pandemic risk is increasing. This paper demonstrates how relatively small investments in the 

two strategies can provide large savings through smaller expected future damages. The 

technical relationships between adaptation, prevention and risk also determine the optimal 

mixture of investment over time. As risk increases, the technical relationships between these 

three stocks causes the optimal mixture of strategies to change over time. 
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1. Introduction 

When faced with external threats, nations have a tendency to circle the wagons and protect 

themselves first. In the past, this may have been the safest course of action. As the world 

becomes more interconnected, events in one nation have greater implications for others. 

Pandemic prevention is the quintessential global public good - prevention in remote regions of 

the world can help protect major cities on every continent (World Bank, 2013). Yet there are 

strong incentives to locate investment domestically in attempt to protect one’s own country. 

There are additional complications as the risk of pandemics is increasing, driven by 

anthropogenic1 and climatic forces, and poses a grave threat to human welfare (Cohen, 2000). 

These threats can consist of the spread of vectors into new geographies as well as the 

encroachment of humans into fragile ecosystems and disease hotspots. Influenza, with 10 

pandemics over the last 300 years poses the greatest mortality threat and poses a tremendous 

risk to economic activity, with the 1918 pandemic arguably being the greatest natural disaster 

of all time (Morse et al., 2012; Osterholm, 2005).  Although the background factors driving the 

risk of pandemics are largely exogenous to any specific policy maker, their influence can be 

tempered through investment in infrastructure and human capital, with the net effect (at least 

partially) endogenous.   

Investments in risk reduction are typically some combination of adaptation (investments 

that reduce losses) and prevention (investments that makes losses less likely) (Ehrlich and 

Becker, 1972; Kane and Shogren, 2000; Shogren and Crocker, 1999).  Determining the best mix 

of adaptation and prevention requires a knowledge of how the investments affect the risk and 

the technical relationships between the strategies (Zemel, 2015). Risk reduction in the most 

vulnerable regions includes targeted infrastructure and rapid response teams to contain and 

prevent outbreaks from becoming pandemics (Hufnagel et al., 2004). Developing countries are 

often targeted for these public health interventions due to the disproportionate impacts of 

infectious disease that they face, as well as the protection these interventions provide to 

                                                           
1 Globalization and increased contact with new and novel diseases through land use changes and urbanization has 

been shown to lead to increasing pandemic risk (Cohen, 2000; Morse et al., 2012). 
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wealthier nations (Dawood et al., 2012)2. The technical relationships between the alternative 

investments result in their marginal returns being interconnected – for example, investments in 

prevention capital where the risk is building will make it less likely that adaptation capital in the 

United States will ever be used, and adaptation capital reduces the consequences of not 

investing in prevention.  

The 2009 H1N1 pandemic started circulating in Mexico and the United States in April 2009, 

causing 60.8 million cases in the United States before April 2010 (Girard et al., 2010; Shrestha et 

al., 2011).  Globally it is estimated to have caused 280,000 deaths, disproportionately in 

developing countries, likely due to other underlying diseases and weaker healthcare systems 

(Dawood et al., 2012). The 2009 H1N1 influenza pandemic was the first activation of the 

provisions of the International Health Regulations (IHR) (Fineberg, 2014). Vaccines were initially 

unavailable, and the pandemic disproportionately impacted younger people , possibly due to a 

lack of previous exposure to that particular strain of influenza (Shrestha et al., 2011).  The 

World Health Organization (WHO) and Centers for Disease Control and Prevention (CDC) 

worked to speed vaccine development and distribute stockpiles of antivirals and other 

medicines (CDC, 2010; WHO, 2011). The WHO helped to distribute 3 million courses of antiviral 

drugs within 72 countries to slow the spread of the disease and limit its impact (Fineberg, 

2014).Domestically the CDC deployed the Strategic National Stockpile of medical supplies, 

including personal protective equipment and antiviral drugs, which includes some 50 million 

treatment course of antiviral drugs (CDC, 2010).  

Investments in risk reduction capacity significantly tempered the consequences of the H1N1 

pandemic.  As a result of the capacity built in response to the 2003 SARS outbreak, the H1N1 

pandemic only had an economic impact of less than .5% of global GDP (World Bank, 2013).3 Yet 

                                                           
2 In the United States the national plan for pandemics focuses on the detection and containment of outbreaks 

internationally, as well as provisions domestically to reduce their spread and impact (Morse et al., 2012).  The most 

recent pandemic, H1N1 in 2009, demonstrates the potential effectiveness of these investments. 
3 Estimates of a severe pandemic reach $3 trillion in immediate economic damages (roughly 4.8% of global GDP) 

(Jonas, 2013).  Estimates of damages in the United States range from .6% to 5.5% of GDP (McKibbin & Sidorenko, 

2007). These damages are disproportionately driven by demand and supply shocks due to avoidance behavior and 

high worker absenteeism (Jonas, 2013; World Bank, 2013).  The direct costs of an influenza pandemic that caused 

89,000 to 207,000 deaths in the United States had been estimated at only $71 billion to $166 billion excluding lost 
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the possible panic and lost labor of future pandemics have the potential to cause greater 

economic damages than recent experience, with a real potential for catastrophe (Jonas, 2013; 

World Bank, 2013).  Influenza is also not the only threat – the list of emerging and reemerging 

diseases includes Chikungunya fever, Dengue fever, Ebola, tuberculosis, cholera, malaria as well 

as HIV, and SARS (Lindgren et al., 2012; McMichael, 2004; Morse et al., 2012). While our 

analysis is focused on influenza, there has been a recent influx of vector-borne diseases in the 

Western Hemisphere, including the current Zika virus outbreak (Fauci and Morens, 2016). 

In spite of these risks, many countries lack the capacity to meet a surge in demand for 

healthcare services and supplies, and require greater investment into vaccination technology to 

speed their development during a crisis (Osterholm, 2005). The United States alone is 100,000 

nurses short of what would be needed during a large pandemic and lacks critical supplies and 

infrastructure, such as an adequate number of beds, with many emergency facilities already 

operating at capacity (Bartlett and Borio, 2008). Vaccine development is hampered due to the 

difficulty in predicting the timing and magnitude of pandemics.  As information on specific 

strains of viruses typically only becomes available after an outbreak occurs, vaccines are not 

available in the initial stages (Morse, 2007; Osterholm, 2005).  The lack of preparedness has 

been made clear by many countries not meeting the core capacities outlined in the 

International Health Regulations (Morse et al., 2012; Ross et al., 2015) due to lack of resources 

and competing priorities. One estimate of the cost to bring capacity in public veterinarian and 

human health systems up to international standards is $3.4 billion a year, even though these 

investments have been estimated to yield annual benefits of $37 billion (World Bank, 2013). 

We consider the capacity of pandemic risk reduction as stocks of capital that provide society 

the ability to prevent the likelihood of a pandemic and the ability to adapt to the consequences 

of a pandemic if it should occur. Given the location-specific emergence of pandemic risk, 

prevention capacity can entail actions in regions where the pandemic is likely to emerge, and 

affects the probability of a pandemic occurring. In contrast, adaptation capacity measures the 

ability (for example) of domestic actions in the United States to reduce domestic damages due 

                                                                                                                                                                                           
productivity and other economic costs (Meltzer, Cox, & Fukuda, 1999).  Avoidance behavior and adverse economic 

shocks due to the 2003 SARS outbreak (with only 8,000 cases) cost $30 to $100 billion (Bartlett & Borio, 2008).    
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to economic interruptions, morbidity and mortality. Preemptive investments made over time 

build these capital stocks. 

The best mix of pandemic prevention and adaptation capital and their investment pattern 

over time are derived using a Poisson jump process to model a pandemic as a sudden damaging 

event (Reed and Heras, 1992; Zemel, 2015). Similar work demonstrated the importance of 

endogenous versus exogenous hazard rates (De Zeeuw and Zemel, 2012), while Zemel(2015) 

examined the optimal mixture of prevention and adaptation capital when faced with a stock of 

pollution that can lead to sudden environmental damages, in the face of a constant background 

hazard. Investment in prevention(Berry et al., 2015) and adaptation capital (Tsur and Withagen, 

2013) when facing an exogenously increasing hazard rate have been examined separately. In 

both cases, there are welfare gains to be had if investment responds to exogenous changes in 

the probability of an event occurring. 

This paper extends this literature by including both an increasing background hazard and 

the tradeoff between adaptation and prevention. Importantly, we include the interaction 

between returns to alternative strategies and the technological response of these strategies to 

an increasing risk.  When the risk exogenously increases, stocks of either capital should be built 

up first with a large one time investment, and then the stock should added to over time by 

investing above and beyond what is needed to replace depreciation. Investments and the 

mixture of strategies in the portfolio of risk reduction capital necessarily depend on the 

background hazard rate as well as how the marginal returns to each activity change with the 

background hazard rate. 

The paper proceeds as follows: the model and solution procedure are introduced in section 

2, and several analytical conclusions are drawn. A numerical exercise follows in section 3, with a 

discussion of results in section 4. 

2. Model  

Consider a domestic policymaker charged with mitigating the risk of a pandemic that occurs 

at time given by the random variable T. Time is partitioned in the model into two periods, the 

ex-ante period before a pandemic has occurred, 𝑡 < 𝑇, and the ex-post period when the 
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pandemic occurs, 𝑡 ≥ 𝑇, and causes economic damage. The variable 𝑇 has the distribution 𝐹 =

1 − 𝑒− ∫ 𝜓(𝑏(𝑡),𝑁(𝑡))𝑑𝑠
𝑡

0  and density𝑓 = 𝜓(𝑏(𝑡), 𝑁(𝑡))𝑒− ∫ 𝜓(𝑏(𝑡),𝑁(𝑡))𝑑𝑠
𝑡

0 . The density and 

distribution are related to the hazard function 𝜓(𝑏(𝑡), 𝑁(𝑡)) which is the probability of a 

pandemic in the next instant, given one has not already occurred. The hazard rate is a measure 

of risk faced by the policymaker. The hazard rate depends on an exogenous background risk, 

b(t), 𝜓𝑏 > 0, which is increasing, 𝛿𝑏/𝛿𝑡(𝑡) ≥ 0, to a new constant level 𝑏̅ which it reaches at 

time 𝑡 = 𝜃, 𝛿𝑏(𝜃)/𝛿𝑡 = 0, due to a wide variety of anthropogenic and climatic factors(Cohen, 

2000; Morse et al., 2012). The hazard rate can be reduced by investment in prevention capital, 

𝑁(𝑡), to delay a pandemic 𝜓𝑁 < 0. This capital is located in “hotspots” in foreign countries 

where disease emergence is most likely and includes investment in rapid response teams and 

capacity. Examples include the new pandemic emergency facility proposed by the President of 

the World Bank to channel funds to organizations attempting to contain disease outbreaks 

before they become pandemics, as well as in capital to assist lower income countries in meeting 

the International Health Regulations standards (Ross et al., 2015).  

In the ex-ante interval, domestic managers can also invest in a stock of adaptation capital 

𝐴(𝑡) located domestically which reduces the local economic cost of a pandemic in the ex-post 

period. This consists of domestic investments (i.e. in the United States) such as containment 

units, investing in local hospitals, or otherwise increasing capacity in the U.S. to meet the needs 

of a future pandemic (Bartlett and Borio, 2008). By focusing on the decisions of domestic U.S. 

policymakers’ we can distinguish between prevention capital and adaptation capital by location 

as well as purpose. For instance, investment in hospitals in Southeast Asia is prevention capital, 

while hospitals in Omaha, Nebraska are adaptation capital. Spending on expanding the capacity 

of GOARN (Global Outbreak Alert & Response Network) is prevention (intended to counter 

pandemic early on) and investments in first responders in the United States, are adaptation. For 

analytical clarity it is assumed that there is a clear distinction between the two investments. 

 In the ex-post interval, a pandemic has occurred at time 𝑇 causing lump-sum damages 

which are reduced by the existing stock of adaptation capital at that instant, 𝐴(𝑇). Damages 

include economic damages from avoidance behavior and lost productivity, possible long term 
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effects from infection, costs from treatment and hospitalization and surge spending on new 

resources to respond to a pandemic in the US. Preemptive ex-ante investment in adaptation 

capital influences realized economic damages. Given the preemptive focus of the problem, we 

abstract from ex-post optimization, and take the expected present value of the ex-post system 

at time 𝑇 to be  

−𝐷(𝐴(𝑇))𝑒−𝑟𝑇      (1) 

where 𝐷′(𝐴(𝑇)) < 0 and 𝐷"(𝐴(𝑇)) > 0. Ex-post damages are assumed to be independent of 

the probability of a pandemic. This model does not include the possibility that adaptation 

capital is incorrectly targeted, which would scale the marginal benefit of adaptation capital up 

or down. 

 Before a pandemic, 𝑡 < 𝑇, the policymaker decides on the cost minimizing combination 

of  investment in prevention 𝑛(𝑡) or adaptation 𝑎(𝑡) over the interval before a pandemic 

occurs,  

∫ (−𝑛(𝑡) − 𝑎(𝑡))𝑒−𝑟𝑡𝑑𝑡
𝑇

0
      (2) 

where the timing of 𝑇 is uncertain. The stocks of both prevention and adaptation capital are 

governed by the capital accumulation equations 

𝐴̇ = 𝑎 − 𝜁𝐴      (3) 

and  

𝑁̇ = 𝑛 − 𝛿𝑁.      (4) 

Both stocks are increased by the related flow of investment and depreciate at constant rates; 𝜁 

for adaptation, and 𝛿 for prevention. Depreciation includes wear and tear on equipment, as 

well as changes in technology and antimicrobial resistance. For example, hospitals and facilities 

in developing countries may depreciate due to climate and difficulties in performing 

maintenance. Investment in vaccination might decay faster in one country or another due to 

population turnover. The effectiveness of treatments depreciates over time as microbes evolve 

to become resistant to treatment, as well as to find new hosts and adapt to changes in climate. 
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 The policymaker’s stochastic optimization problem is to maximize the expected sum of 

ex-ante expenditures and the ex-post value function  

𝐸𝑇 {∫ (−𝑛(𝑡) − 𝑎(𝑡))𝑒−𝑟𝑡𝑑𝑡 − 𝐷(𝐴(𝑇))𝑒−𝑟𝑇𝑇

0
}   (5) 

where 𝐸𝑇 denotes expectations on the random variable 𝑇, the arrival time of a pandemic, and 

the problem is maximized subject to (3) and (4). Following the transformations in Reed and 

Heras(1992) and Zemel (2015), it is possible to write the stochastic optimal control problem as 

∫ {(−𝑛(𝑡) − 𝑎(𝑡))𝐼(𝑡 < 𝑇) − 𝐷(𝐴(𝑇))𝐼(𝑡 = 𝑇)}𝑒−𝑟𝑡∞

0
𝑑𝑡   (6) 

where the indicator function 𝐼(𝑡 < 𝑇) holds the value 1 when 𝑡 < 𝑇 and 0 otherwise, and 

similarly 𝐼(𝑡 = 𝑇) has value 1 when 𝑡 = 𝑇 and 0 otherwise. 𝑇 is a terminal time, so that at that 

instant agents must pay the expected value of damages from that 𝑇into the infinite future. We 

can then use the definitions of the distribution and density to rewrite the problem  

max
n,a

 ∫ {(−𝑛 − 𝑎) − 𝐷(𝐴(𝑡))𝜓(𝑏(𝑡), 𝑁(𝑡))}𝑒− ∫ (𝑟+𝜓(𝑏(𝑠),𝑁(𝑠))𝑑𝑠  
𝑡

0
∞

0
𝑑𝑡   (7) 

Which is maximized subject to equations (3) and (4), the exogenous background hazard, the 

dynamics of the cumulative hazard function (8),  

𝑦̇(𝑡) = ∫ 𝜓(𝑏(𝑡), 𝑁(𝑡))𝑑𝑡
𝑡

0
, 𝑏̇(𝑡) ≥ 0, 𝑏̇(𝜃) = 0,    (8) 

and constraints on the maximum level of investment, 𝑎 ≤ 𝑎̅ and 𝑛 ≤ 𝑛̅. The upper bounds 𝑎̅ 

and 𝑛̅ reflect budget constraints and frictions when investing in capital stocks. We assume that 

at time𝜃 the background hazard rate will reach a new ‘normal’, 𝑏̅, and cease to increase. 

2.1 Hamiltonian and Maximum Principle 

The objective function is maximized using the conditional current value Hamiltonian 

(henceforth simply the ‘Hamiltonian’) defined in Reed and Heras (1992). The Hamiltonian, 

suppressing time notation, is  

𝐻 = −𝑛 − 𝑎 − 𝐷(𝐴)𝜓(𝑏, 𝑁(𝑡))  + 𝜌1[𝑛 − 𝛿𝑁] + 𝜌2[𝑎 − 𝜁𝐴] + 𝜌3𝜓(𝑏, 𝑁).  (9) 
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The benefit maximizing path of investment in prevention and adaptation capital is given by the 

Pontryagin and Boltyanskii (1962) maximum principle, which require investment in the 

respective capital stocks, n and a, balance the marginal cost of investment (both $1) with the 

expected marginal benefit of investment, or  

−1 + 𝜌1 {
> 0
= 0
< 0

,      (10) 

−1 + 𝜌2 {
> 0
= 0
< 0

.      (11) 

In equations (10) and (11) the marginal benefit of investment in either capital stock is the 

shadow value of the respective capital stock, given by the conditional costate variable. The 

costate variable is the value of an additional unit of capital stock in either a lower hazard rate or 

lower damages. If the marginal cost is always greater than the marginal benefit for one or both 

types of capital, it is optimal to not invest in that stock. If the marginal benefit is always greater 

than the marginal cost for one or both stocks investment should be made at the maximum 

possible rate, 𝑎̅ and 𝑛̅. When investment is made at the maximum rate in one or both stocks 

they will grow to their maximum feasible levels  𝐴̅ =
𝑎̅

𝜁
 and/or 𝑁̅ =

𝑛̅

𝛿
. If the marginal benefit is 

exactly equal to the marginal cost at some non-boundary level the optimal decision is on a 

singular arc. It is possible to be on a singular arc for only prevention capital or only adaptation 

capital, or for both simultaneously. We refer to these different cases as either the ‘singular 

solution’ when both capital stocks are on a singular arc, or as a ‘partial singular solution’ when 

only one capital stock is on a singular arc, and the other is at an extreme value. A welfare 

analysis comparing maximum paths with singular and partial singular solutions is included 

below. For the remainder of this section the discussion will focus on singular solutions and 

partial singular solutions. 

The maximum principle requires optimal intertemporal management of the system, 

given by a required evolution of the costate variables (where subscripts denote partial 

derivatives), 
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𝜌̇1 = (𝑟 + 𝜓(𝑏, 𝑁) + 𝛿)𝜌1 + 𝜓𝑁(𝑏, 𝑁)(𝐷(𝐴(𝑡)) − 𝜌3)  (12) 

𝜌̇2 = (𝑟 + 𝜓(𝑏, 𝑁) + 𝜁)𝜌2 + 𝜓(𝑏, 𝑁)𝐷𝐴(𝐴(𝑡))   (13) 

𝜌̇3 = (𝑟 + 𝜓(𝑏, 𝑁))𝜌3 − n − a − 𝜓(𝑏, 𝑁)𝐷(𝐴(𝑡))  (14) 

Using the solutions to (12), (13), and (14) it is possible to sign the costate variables4, so that on 

the optimal solution 𝜌1, 𝜌2 > 0 and 𝜌3 < 0 (Zemel, 2015). Integrating equation (14) and 

applying the infinite horizon transversality condition has the solution  

−𝜌3 = 𝑒𝑟𝑡+𝑦(𝑡) max
𝑛,𝑎

∫ [−𝑛(𝜏) − 𝑎(𝜏) − 𝜓(𝑏(𝜏), 𝑁(𝜏))𝐷(𝐴(𝜏))]𝑒−𝑟𝜏−𝑦(𝜏)𝑑𝜏
∞

𝑡
.  (15) 

The costate equation 𝜌3 is the expected present value of costs and damages from an optimally 

managed system (Reed and Heras, 1992). The value of remaining in the ex-ante period without 

a pandemic in any instant is given by (𝐷(𝐴(𝑡)) − 𝜌3), which is the instantaneous value of 

damages from a pandemic occurring conditional on the level of adaptation capital, less the 

expected value of damages if a pandemic is delayed. 

 A capital theoretic approach provides additional insight. Substitute the prevention 

capital first-order condition (10) into the prevention capital costate equation (12) on the 

prevention singular arc where 𝜌̇1 = 0 and 𝜌1=1. The costate equation becomes an arbitrage 

condition 

𝑟 + 𝜓(𝑏, 𝑁) + 𝛿 = −𝜓𝑁(𝑏, 𝑁)(𝐷(𝐴) − 𝜌3).   (16) 

The left hand side of (16) is the required return on a unit of prevention capital, the right hand 

side the real return. The required return is what a policymaker could earn by divesting a unit of 

capital and investing the proceeds in an alternative investment, possibly the control of another 

                                                           
4Equations (12) and (13), integrating and using the infinite horizon transversality condition, have the solutions 𝜌1 =

𝑒(𝑟+𝛿)𝑡+𝑦(𝑡) ∫ 𝜓𝑁(𝑏, 𝑁)[𝜌3 − 𝐷(𝐴)]𝑒−(𝑟+𝛿)𝜏−𝑦(𝜏)𝑑𝜏
∞

𝑡
 and 𝜌2 = 𝑒(𝑟+𝜁)𝑡+𝑦(𝑡) ∫ −𝜓(𝑏, 𝑁)𝐷𝐴(𝐴)𝑒−(𝑟+𝜁)𝜏−𝑦(𝜏)𝑑𝜏

∞

𝑡
. 

Intuitively the costate variables reflect the discounted marginal benefit of either type of capital into the infinite 

future. For example, 𝜌1 is the reduction in risk, weighted by the benefit of remaining in an uninvaded state into the 

future for a unit of prevention capital. The costate 𝜌2 is the marginal reduction in expected damages from one unit of 

adaptation capital into the infinite future. Both are discounted not only by the market return on an alternative 

investment and the depreciation rate but also the probability of a pandemic. These can be confirmed with time 

differentiation using the Leibniz rule. The costate values of both types of capital are positive as long as it is 

preferable to avoid a pandemic (𝜌3 < 𝐷(𝐴(𝑡)) using (16) below), as investment in either mitigates the expected cost 

of a pandemic. 
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risk, or a financial asset. The required return is the marginal cost of a unit of prevention capital 

and includes the market rate of return on alternative investments, 𝑟, plus premiums for the risk 

of a pandemic occurring, 𝜓(𝑏, 𝑁), and depreciation of the capital stock 𝛿. The real return of a 

unit of prevention capital, given by the right hand side of (16) is the reduction in expected 

future damages and is the marginal benefit of an additional unit of prevention capital. It 

consists of the reduction in the probability of a pandemic occurring in the next instant, given it 

has not yet occurred, 𝜓𝑁(𝑏, 𝑁), weighted by marginal cost of transitioning to the ex-post 

period and incurring the costs of a pandemic , 𝐷(𝐴) − 𝜌3. If the real return is greater than the 

required return, prevention capital is better performing asset and a rational policymaker should 

sell alternative investments and purchase more prevention capital. If the required return is 

greater than the real return, a manager should optimally sell prevention capital and purchase 

the alternative investment.  

Intertemporal arbitrage is complicated by marginal impact of prevention capital on the 

hazard rate, 𝜓𝑁(𝑏, 𝑁), changing as the background probability of a pandemic, 𝑏(𝑡), changes 

(unless 𝜓𝑁𝑏(𝑏, 𝑁) = 0). The direction of change may be positive or negative. As the risk of a 

pandemic increases, the next dollar of investment may become more effective because it 

becomes easier to identify high risk “hotspots”. It is also possible as risks increase investment in 

prevention becomes less effective. Risk driven by globalization may become more difficult to 

mitigate as countries become more open to the outside world.  

Real returns from prevention capital are also dependent on the stock of adaptation 

capital, as demonstrated in equation (16).  The marginal benefit of investing in prevention 

capital is reduced by adaptation capital because the difference in value between the optimally 

controlled ex-ante situation and the potential damages from a pandemic is smaller. Similar to 

self-insurance, a larger stock of adaptation capital provides benefits in the ex-post period by 

increasing the value of a post-outbreak world. This comes at a cost of forgone benefits in the 

ex-ante period. Policymakers trade benefits in the present for reduced uncertainty in the 

future, reducing the value of self-protection.  
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 A similar intertemporal arbitrage condition for holding adaptation capital can be derived 

by substituting the first-order condition (11) into costate equation (13) and assuming we are on 

the singular arc, 𝜌2 = 1, 𝜌̇2 = 0,  

𝑟 + 𝜓(𝑏, 𝑁) + 𝜁 = −𝜓(𝑏, 𝑁)𝐷𝐴(𝐴)    (17) 

Equation (17) requires a balance of the required return on adaptation capital with its real 

return. The required return again consists of the market return on alternative investments, 𝑟, a 

premium for the hazard rate, 𝜓(𝑏, 𝑁), and a premium for the depreciation rate of adaptation 

capital, 𝜁. The real return is the decrease in expected damages in the ex-post world 𝐷𝐴(𝐴), 

weighted by the probability that the world transitions into the ex-post state, 𝜓(𝑏, 𝑁). 

Comparisons of the required and real returns again guide the policy maker’s asset portfolio. The 

required and real returns of adaptation capital depend on investment in prevention capital in 

equation (17). Stocks of prevention capital reduce the probability of a pandemic occurring, 

which in turn reduces the real return to adaptation capital. Prevention capital also reduces the 

required hazard rate premium, and thus the required return on capital because adaptation 

capital can be expected to reduce the expected damages of a pandemic for a longer ex-ante 

period. 

The final optimality conditions consist of the state equations, (3), (4) and (8) and the 

maximum constraints on investment. Maximum investment rates are due to friction when 

attempting to rapidly build capital stocks, and represent either budget constraints or physical 

limitations. Solution methods for the boundary solutions are straightforward. Solutions for 

singular arcs are outlined below. 

2.2 Solutions 

There are seven possible strategies that can be pursued by policymakers. The extreme 

solutions consist of investing in neither capital stock (𝑛 = 𝑎 = 0), either at the maximum rate 

(𝑛 = 𝑛̅ and 𝑎 = 0 or 𝑛 = 0 and 𝑎 = 𝑎̅), or both at maximum rates (𝑎 = 𝑎̅ and 𝑛 = 𝑛̅). These 

solutions are included in the numerical exercise, and consist of most rapid approach paths to 

the extreme levels of their respective capital stocks.  
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The singular solutions and partial singular solutions follow the same pattern. Partial singular 

solutions assume one capital stock is on a singular arc and the other is set at an extreme. The 

singular solutions assume both capital stocks are on their respective singular arcs. For welfare 

calculations for partial singular solutions, investment in one capital stock will be constrained to 

zero, although policymakers may inherit a stock of capital5. The optimal paths for singular 

investment in both capital stocks are derived below. The partial singular solutions are nested 

within the singular solution. 

2.2.1 Singular arcs 

The (partial) singular solutions require the respective first-order conditions hold with 

equality. Imposing this condition on (10) and (11) provides 𝜌1 = 𝜌2 = 1 and 𝜌̇1 = 𝜌̇2 = 0, the 

conditions to be on their respective capital stock’s singular arcs. To derive the singular solution 

we impose the conditions to be on the prevention capital singular arc on (12). Solving for 𝜌3, 

𝜌3 =
(𝑟+𝜓(𝑏,𝑁)+𝛿)

𝜓𝑁
+ 𝐷(𝐴).     (18) 

Time differentiating (18) finds 

𝜌̇3 =
(𝜓𝑏𝑏̇+𝜓𝑁𝑁̇)𝜓𝑁−(𝜓𝑁𝑁𝑁̇+𝜓𝑁𝑏𝑏̇) (𝑟+𝜓(𝑏,𝑁)+𝛿)  

𝜓𝑁
2 + 𝐷𝐴(𝐴)𝐴̇.  (19) 

Setting this equal to the previous definition of 𝜌̇3 in (14) allows us to solve for 𝑁̇, 

𝑁̇ =
𝜓𝑏𝜓𝑁−𝜓𝑁𝑏(𝑟+𝜓+𝛿)

𝜓𝑁𝑁(𝑟+𝜓+𝛿)−2𝜓𝑁
2 𝑏̇ +

(1+𝐷𝐴(𝐴))𝜓𝑁
2

𝜓𝑁𝑁(𝑟+𝜓+𝛿)−2𝜓𝑁
2 𝐴̇ −

𝜓𝑁
2 [(𝑟+𝜓)𝜌3−𝛿𝑁−𝜁𝐴−𝜓𝐷(𝐴)]

𝜓𝑁𝑁(𝑟+𝜓+𝛿)−2𝜓𝑁
2 .  (20) 

Substituting for  𝑁̇ in (20) from Equation (4), we can find a feedback rule for the optimal 

investment in prevention capital (21), which depends on the current stocks of prevention and 

adaptation capital, and how the adaptation capital and background risk are changing over time 

𝑛 = 𝛿𝑁 +
𝜓𝑏𝜓𝑁−𝜓𝑁𝑏(𝑟+𝜓+𝛿)

𝜓𝑁𝑁(𝑟+𝜓+𝛿)−2𝜓𝑁
2 𝑏̇ +

(1+𝐷𝐴(𝐴))𝜓𝑁
2

𝜓𝑁𝑁(𝑟+𝜓+𝛿)−2𝜓𝑁
2 𝐴̇ −

𝜓𝑁
2 [(𝑟+𝜓)𝜌3−𝛿𝑁−𝜁𝐴−𝜓𝐷(𝐴)]

𝜓𝑁𝑁(𝑟+𝜓+𝛿)−2𝜓𝑁
2 . 

 (21) 

                                                           
5 Comparative dynamic analysis shows the general result holds, even with preexisting stocks of the alternative 

capital stock. 
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We derive a feedback rule for adaptation capital by using the conditions to be on the 

adaptation singular arc from (11) upon (13). We then time differentiate and substitute for 𝐴̇ 

using equation (3) to find 

𝑎 = 𝜁𝐴 −
(𝑟+𝜁)𝜓𝑁

𝜓2𝐷𝐴𝐴
𝑁̇ −

(𝑟+𝜁)𝜓𝑏

𝜓2𝐷𝐴𝐴
𝑏̇.    (22) 

Equation (22) is the feedback rule for the optimal singular investment in adaptation capital, as a 

function of the current capital stocks and how the prevention capital stock and background risk 

are changing over time. Together equations (21) and (22) define how the singular levels of 

investment in adaptation and prevention capital change over time in the (partial) singular 

solutions.  

 If policymakers seek to follow one of the (partial) singular solutions, their choice of 

investment in one stock will be impacted by the level of the other. If policymakers begin off the 

optimal path with too little of one or both stocks of capital, they should make large lump sum 

investments to reach capital stocks on the path. If policymakers begin with too much of one 

type of capital and too little of the other, they should transfer assets between the two to reach 

an optimal combination. For example, a policymaker may seek to apply the singular solution, 

but have an adaptation capital stock that is greater than what is called for and an insufficient 

prevention capital stock. This policymaker might continue to invest in adaptation capital above 

what the optimal level would otherwise be while building up their prevention capital stock. 

They would eventually invest in less than the amount of depreciation in the excess capital 

stock, and allow it to fall to an optimal level. 

To solve this system of feedback rules it is necessary to derive endpoint conditions. This 

is done with two steady-state curves where the conditions for either adaptation capital or 

prevention capital to be on their respective singular arcs hold (Zemel, 2015). On these curves 

the system has reached time 𝜃 where for 𝑡 ≥ 𝜃 the background hazard rate remains constant 

so that the problem becomes time-autonomous.  

We begin by solving for the prevention capital steady-state curve, shown in Figure 1a. 

Set (14) equal to zero and substitute the steady state levels of investment, 𝑛 = 𝛿𝑁 and 𝑎 = 𝜁𝐴  
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0 = (𝑟 + 𝜓(𝑏, 𝑁))𝜌3 − δN − ζA − 𝜓(𝑏, 𝑁)𝐷(𝐴).   (23) 

Solve (23) for 𝜌3 and substitute this into (12) evaluated at the steady state to define the 

prevention steady-steady state curve, or N-steady state curve in Figure 1. Combinations of 

adaptation capital and prevention capital on this curve satisfy the conditions for a steady state 

and a partial singular solution in prevention capital.  

The second steady state curve is defined by evaluating (13) on the singular arc for 

adaptation capital and steady state background hazard rate. Combinations of adaptation capital 

and prevention capital on this curve in Figure 1a satisfy the conditions for a steady state and a 

partial singular solution in adaptation. Points where these two curves cross in Figure 1a are 

combinations of adaptation and prevention capital where conditions for a double singular 

steady state hold. Where the curves cross, all conditions for a steady state hold (𝐴̇ = 𝑁̇ = 𝑏̇ =

𝜌̇1 = 𝜌̇2 = 𝜌̇3 = 0). These intersections are shown in Figure 1a, and there are two candidate 

singular solutions for our parameterization. There are also two partial singular solutions shown 

in Figure 1b (one with only adaptation capital, one with only prevention capital). Both partial 

singular solutions end on their respective capital stock’s steady state curve where they intersect 

their respective axis. 

To examine how a change in the exogenous probability of a pandemic impacts the 

optimal mix of prevention and adaptation capital stocks, examine equation (12) divided by (13) 

assuming a singular solution, 

𝑟+𝜓(𝑏,𝑁)+𝛿

𝑟+𝜓(𝑏,𝑁)+𝜁
=

𝜓𝑁(𝑏,𝑁)(𝐷(𝐴)−𝜌3)

𝜓(𝑏,𝑁)𝐷𝐴(𝐴)
.   (24) 

The optimal mix of prevention capital and adaptation capital depends on the technological 

characteristics of the risk mitigating technology and the technological substitute and 

compliment relationships between adaptation and prevention, as well as how investment in the 

other capital stock responds to the change in background probability of a pandemic. For 

instance, as the depreciation rate of either capital stock increases, the relative required return 

of that capital stock rises due to the increased depreciation premium. This requires a larger real 

return to that strategy, and a reduction in the size of that stock. This reduction in the size of the 
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stock will also change the relative balance of the two capital stocks and may lead to a change in 

the other stock at the same time. The relative real returns are even more interconnected than 

the required returns. For instance, a change in the marginal return of prevention, 𝜓𝑁, due to a 

new technology, will lead to both a change in the real return of prevention capital and the 

relative return to adaptation capital. It will also impact the required return of both strategies by 

changing the required premium for risk. Similarly, a change in the marginal return of adaptation 

capital, 𝐷𝐴, will be magnified by changes to the marginal benefit of prevention.  

Another example would be a change in the exogenous background hazard. 

Differentiating (24) with respect to the background risk, 

𝜓𝑏(𝑏,𝑁)[𝜁−𝛿]

(𝑟+𝜓(𝑏,𝑁)+𝜁)2 =
[𝜓𝜓𝑁𝑏−𝜓𝑁𝜓𝑏]𝐷𝐴(𝐴)(𝐷(𝐴)−𝜌3)

(𝐷𝐴(𝐴)𝜓)2      (25) 

The left hand side includes how the ratio of required returns changes with a change in the 

hazard rate, where the relative change in the two ratios depends on the different depreciation 

rates, [𝜁 − 𝛿]. If the depreciation rate for prevention capital is larger, an increase in background 

risk causes the left hand side, the relative required return of prevention capital to adaptation 

capital, to decrease. The right hand side must also decrease for the first-order conditions to 

continue to hold with equality. This requires a relatively larger stock of prevention capital. If it is 

assumed both capital stocks depreciate at the same rate, there is no change in the relative 

required returns. With the assumption that remaining in a pre-pandemic system is preferable 

(𝐷(𝐴) − 𝜌3 > 0) the change in the right hand side depends on the sign of the terms in the 

square brackets. The far right term is unambiguously negative, 𝐷𝐴(𝐴)(𝐷(𝐴) − 𝜌3) < 0. The 

sign of the square bracketed terms depends on whether prevention efforts become more 

effective as background risk increases 𝜓𝑁𝑏(𝑏, 𝑁). If background risk makes prevention more 

effective, the relative marginal benefit of prevention increases, leading to more prevention 

investment. We examine this in our numerical example below, where our parameterization 

assumes higher risk makes prevention more effective. If an increase in risk makes prevention 

less effective, the effect is ambiguous and depends on the relative magnitudes of 𝜓𝜓𝑁𝑏 and 

𝜓𝑁𝜓𝑏.    
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2.2.2 Prevention only partial singular solution 

First examine the partial singular solution where managers invest only in prevention so 

that 𝜌̇1 = 0, 𝜌1 = 1, 𝑎(𝑡) = 0. The feedback rule for prevention capital is modified so that  

𝑎(𝑡)=0 in (21) however it is not true that 𝐴(𝑡)=0, as it is possible that some stock of adaptation 

capital is inherited by our policymaker. On this path the adaptation capital stock monotonically 

depreciates over time to nothing. In this case only the N-steady state curve is relevant, and a 

solution should end on this curve. 

As the background probability of a pandemic increases, investment in prevention 

increases, leading to a larger prevention capital stock. In order to reach the optimal prevention 

capital schedule it is necessary to follow a most rapid approach path to the optimal path, and 

this depends on the initial background probability of a pandemic and existing adaptation capital 

stock. After this initial investment in prevention capital, it is necessary to invest more than the 

amount required to replace depreciation to build up the capital stock to compensate for an 

increase in the background probability of a pandemic. Because there is no investment in 

adaptation, the adaptation stock depreciates away over time. 

 Examine the costate equation for adaptation evaluated when there is no adaptation 

capital stock, so that the marginal benefit of the next unit is at its highest possible level, 𝐴 = 0. 

If it is initially optimal to invest only in prevention, it may be optimal to invest in adaptation in 

the future. To begin investing in adaptation, it is necessary for  𝜌̇2 > 0. This requires that the 

return on the shadow value of adaptation capital, (𝑟 + 𝜓(𝑏, 𝑁) + 𝜁), weighted by the value of 

adaptation capital, 𝜌2, be greater than the expected dividend (or instantaneous benefit) of 

adaptation capital 𝜓(𝑏, 𝑁)𝐷𝐴(𝐴), which consists of the increase in expected value of the ex-

post state.  

𝜌̇2 = (𝑟 + 𝜓(𝑏, 𝑁) + 𝜁)𝜌2 + 𝜓(𝑏, 𝑁)𝐷𝐴(𝐴)     (26) 

Using the solution for 𝜌2, the value of adaptation capital will rise over time. This is because 𝜌2 is 

equal to the marginal benefit of adaptation capital from the current time into the future, 

discounted by the market rate as well as premiums for the hazard rate and depreciation. This 

necessarily includes the marginal benefit in the current period, and given 𝑟 and 𝜁 are strictly 
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positive, the return on prevention capital (𝑟 + 𝜓(𝑏, 𝑁) + 𝜁)𝜌2 is always greater than the per 

period dividend 𝐷𝐴(𝐴)𝜓(𝑏, 𝑁). This implies that ceteris paribus it is preferable to invest in a 

mixture of adaptation capital and prevention capital, rather than only prevention capital. 

The impact of a change in the prevention stock on the growth of the shadow value of 

adaptation capital is found using the derivative of (13) with respect to N, 

𝜕𝜌̇2

𝜕𝑁
= 𝜓𝑁𝜌2 + 𝜓𝑁𝐷𝐴(𝐴)  = 𝜓𝑁(𝜌2 + 𝐷𝐴(𝐴)).    (27) 

An increase in prevention capital has a mixed impact on the incentive to invest in adaptation. 

The marginal cost of adaptation capital falls because a smaller rate of return is required on 

investment to compensate for the risk of a pandemic occurring. The marginal benefit of 

adaptation capital is reduced by the change in the probability of adaptation capital being used 

in the future. The overall sign of the derivative is ambiguous, and depends on if the shadow 

value of adaptation capital and is greater than the marginal change in damages from adaptation 

capital.  

The impact of a rise in the background probability of a pandemic is found with the 

derivative of (21) with respect to b,  

𝜕𝜌2̇

𝜕𝑏
= (𝜌2 + 𝐷𝐴(𝐴)) (𝜓𝑏 + 𝜓𝑁

𝜕𝑁

𝜕𝑏
)    (28) 

Again, the impact depends on the relative magnitude of the shadow value of adaptation capital 

in comparison to the marginal reduction in damages from adaptation capital (first term on the 

right). There are two effects in (23) that follow a change in background risk. The first reflects 

how an increase in background risk directly increases the hazard, increasing the marginal value 

of adaptation capital.  The second is how a change in background risk changes the prevention 

stock and indirectly changes the hazard. If an increase in background risk leads to a larger 

prevention stock, the indirect effect accentuates the direct effect, putting an upward pressure 

on the change in marginal value of adaptation capital.  The indirect effect will attenuate the 

direct effect if an increase in background risk leads to a smaller prevention stock.   
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2.2.3 Adaptation partial singular solution without prevention 

 Now examine the situation where only adaptation is on its singular arc (𝜌1 < 1, 𝜌2 =

1 , 𝜌̇2 = 0). In this case investment in prevention capital is set equal to zero, while adaptation is 

assumed to evolve at the singular rate. Again the prevention capital stock will only decrease 

over time as it depreciates, but is not necessarily always zero because policymakers may inherit 

a stock of capital. In order for it to become optimal to also invest in prevention capital, the 

shadow value of prevention capital must increase over time. The dynamics of the costate value 

of prevention capital are given by equation (12), which in the adaptation capital partial singular 

solution is  

𝜌̇1 = (𝑟 + 𝜓(𝑏, 𝑁) + 𝛿)𝜌1 + 𝜓𝑁(𝑏, 𝑁)(𝐷(𝐴) − 𝜌3).   (29) 

The first term represents the required return of prevention capital. This is the return on a 

comparable asset, where 𝜌1 is the value of the prevention capital stock. The return includes the 

market rate of return, 𝑟, plus premiums for the risk of a collapse 𝜓 and depreciation 𝛿.  For the 

value of the asset to grow, this return must be greater than the expected dividends received in 

that period from the prevention capital stock, given by the reduced chance of outbreak and 

transition to lower welfare, 𝜓𝑁(𝑏, 𝑁)(𝐷(𝐴) − 𝜌3). Because 𝜌1 is the integral of this marginal 

benefit now and into the future, ceteris paribus the value of prevention capital will increase. 

 Taking a derivative of (29) with respect to 𝐴(𝑡) shows how the growth in the value of 

prevention capital 𝜌̇1 changes as the level of adaptation capital changes.  

𝜕𝜌̇1

𝜕𝐴
= 𝜓𝑁(𝐷𝐴(𝐴) − 𝜌3𝐴

)    (30) 

Additional investment in adaptation has a mixed effect on the incentive to invest in prevention 

capital. More adaptation capital makes a pandemic less damaging, 𝐷𝐴(𝐴) < 0. Adaptation 

capital also impacts the value of the optimally controlled ex-ante system. Assuming investment 

in adaptation follows an optimal path, it must necessarily not lower the value of that system 

relative to no investment at all, so that  𝜌3𝐴
≤ 0 (because −𝜌3 is equal to the expected net 

present value of benefits). Whether 
𝜕𝜌̇1

𝜕𝐴
 is positive or negative will depend on the relative 

magnitude of two effects. The increase in the value of an optimally controlled ex-ante system 
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(from the derivative of (15) with respect to A) consists of both an increase in the expected ex-

post value (𝜓(𝑏, 𝑁)𝐷𝐴(𝐴)) and the higher necessary flow of investment to maintain the higher 

stock, 𝑎. This suggests that 𝐷𝐴(𝐴) > −𝜌3𝐴
 is the  most likely case, and 

𝜕𝜌̇1

𝜕𝐴
> 0. When only on 

the adaptation singular arc the growth rate of the costate value for prevention capital increases 

with more adaptation capital, so that it is again optimal to invest in a combination of strategies. 

 Taking the derivative 

𝜕𝜌̇1

𝜕𝑏
= 𝜓𝑏(𝑏, 𝑁)𝜌1 + (𝜓𝑁𝑏(𝑏, 𝑁) (

𝐷𝐴

𝑟
− 𝜌3) + 𝜓𝑁(𝑏, 𝑁) (

𝐷𝐴

𝑟
− 𝜌3𝐴

)
𝜕𝐴

𝜕𝑏
  (31) 

there are several effects in (31) that determine if an increase in the background risk of a 

pandemic raises or lowers the incentive to invest in prevention capital. First, the higher 

background probability raises the hazard rate and the required return on prevention capital, 

𝜓𝑏(𝑏, 𝑁)𝜌1. Second, the rise in the background hazard rate can either increase or decrease the 

effectiveness of investments in prevention, 𝜓𝑁𝑏(𝑏, 𝑁), which will depend on whether risk and 

prevention are technological compliments or substitutes and is ambiguous. This is weighted by 

the expected value of avoiding a pandemic. Finally, a rise in the background risk can either 

increase or decrease the investment in adaptation, 
𝜕𝐴

𝜕𝑏
, which will change the benefit of 

remaining in the ex-ante state of the world, (
𝐷𝐴

𝑟
− 𝜌3𝐴

), which weights the marginal impact of 

investing in prevention 𝜓𝑁(𝑏, 𝑁). If a higher probability of a pandemic increases adaptation 

capital, this effect will increase the growth rate in the value of prevention capital. Overall 

whether or not an increase in the background probability of a pandemic makes it optimal to 

begin investing in prevention depends on the technological characteristics of the prevention 

and adaptation technologies. Due to the difficulty in finding analytical results, a numerical 

exercise is included in section 3.  

2.2.4 Multiple Steady States and Skiba Thresholds 

Given that there are multiple candidate singular solutions, partial singular solutions and 

multiple possible extreme solutions, it is necessary to evaluate which solution is locally or 

globally dominant. A Skiba plane that divides the phase space between the candidate steady 

states can be derived using condition (32) (Mäler et al., 2004; Skiba, 1978). Equation (38) 
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compares the value of immediately transitioning from any initial point to one of the two 

optimal paths (𝐴0, 𝑁0, 𝑏0).  

−𝜌3
𝑖 (𝑏0, 𝑁𝑖 , 𝐴𝑖) − (𝑁0 − 𝑁𝑖) − (𝐴0 − 𝐴𝑖) = −𝜌3

𝑗
(𝑏0, 𝑁𝑗 , 𝐴𝑗) − (𝑁0 − 𝑁𝑗) − (𝐴0 − 𝐴𝑗) 

 (32) 

This value consists of the expected net present value of benefits on a candidate path, net the 

required changes in capital stocks to move onto that path given the current level of risk. The 

Skiba threshold consists of all points where the value of the path to either steady state is equal. 

This curve determines which path a policymaker would prefer to be on for a given starting 

point, and is evaluated numerically in the next section.  

3. Numerical Exercise 

Due to the difficulty in deriving analytical results, a numerical exercise is included. The 

parameters for this exercise are given in Table 1, and represent the global threat of a pandemic 

outbreak of influenza, where a severe pandemic causes $3 trillion in economic damages (4.8% 

of global GDP) if there is no stock of adaptation capital (Jonas, 2013; World Bank, 2013).  We 

use the global GDP estimate even though we are focused on a self-interested domestic 

policymaker because domestic damages are likely to be 60% from lost economic activity and 

aversion behavior, and for a large economy these global economic effects are likely to be 

proportional to domestic damages (Jonas, 2013). This is large compared to the 2009 H1N1 

pandemic, which caused damages of less than .5% of global GDP. The 2009 pandemic was also 

impacted by mitigation efforts that were started in response to the 2003 SARS epidemic. 

Estimates of potential damages range from a pandemic .5% to 5.5% of GDP (Jonas, 2013; 

McKibbin and Sidorenko, 2007). These losses are due to changes in population, morbidity and 

mortality and lost economic activity.  

The background probability of a pandemic is assumed to be equal to .1, greater than the 

historic rate of 3 outbreaks over the last 100 years to reflect the increasing nature of the risk 

(Meltzer et al., 1999). Numerical results, including final capital stocks and savings are included 

in Table 2.The effectiveness of prevention and adaptation capital are calibrated so that the 

singular solution capital stocks are of a magnitude consistent with previous large scale public 
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health interventions (roughly $2-$4 billion), such as smallpox eradication ($2.1 billion in 2014 

USD) and (unsuccessful) Polio eradication ($7 billion) (Keegan et al., 2011). This is similar to 

estimates of what it would cost to bring the international health system up to a set of minimum 

standards, costing $3.4 billion per year (World Bank, 2013). The depreciation rates are chosen 

to be consistent with typical rates used in economic analysis, and the discount rate is similar to 

that used by the Stern report, as both problems focus on large public goods with long lasting 

impacts (Stern and Treasury, 2006). 

3.1 Baseline 

We begin by defining a baseline case where policymakers do not invest in any mitigation 

strategy. The expected present value of net benefits is given by the costate variable for the 

cumulative hazard, as defined in (15), 

𝜌3 = −𝑒𝑟𝑡+𝑦(𝑡) max
𝑛,𝑎

∫ [−𝑛(𝜏) − 𝑎(𝜏) − 𝜓(𝑏(𝜏), 𝑁(𝜏))𝐷(𝐴(𝜏))]𝑒−𝑟𝜏−𝑦(𝜏)𝑑𝜏
∞

𝑡
.  

 (33) 

We define our baseline by setting 𝑛 = 𝑎 = 𝑁 = 𝐴 = 0, so that the effective hazard rate is the 

background probability of a pandemic, and damages are equal to their unmitigated level. The 

expected present value of damages reflects the per-period flow of costs before a pandemic and 

damages due to the uncontrolled probability of a shift into the ex-post time period, where 

there is no adaptation capital to mitigate damages.  

For this case, the expected present value of damages using the parameters chosen 

above is equal to $2.5 trillion, consisting of the expected value of one pandemic causing $3 

trillion in damages at some point in the future, with an uncertain time of occurrence. This value 

is used to calculate savings from investment in control strategies in the next several sections. 

3.2 Solutions on both singular arcs 

 Solutions where investment is made on both the adaptation and prevention singular 

arcs are considered singular solutions (partial singular solutions are when investment is only on 

one singular arc). For our current parameterization, there are two feasible singular solutions 

that satisfy the optimality conditions. In the first solution the final steady state stock of 
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adaptation capital is equal to $8.093 billion and the final steady state prevention capital stock is 

equal to $505 million. The expected value of damages from a pandemic at the first instant in 

time is $52.39 billion and grows over time. Implementing this singular solution leads to a 

savings of $2.448 trillion at the first instant. At the steady state, a constant investment is made 

to maintain stocks of both prevention and adaptation capital. The second candidate singular 

solution leads to a steady state adaptation capital stock of $4.297billion and prevention capital 

stock of $2.174 billion. The initial expected value of damages due to a pandemic is $49.15 

billion and there are savings from mitigation at this steady state equal to $2.451 trillion. The 

greater potential savings from implementing this singular solution mean this solution is the cost 

minimizing choice. The dynamics of the two capital stocks and investments in those stocks are 

shown in Figure 2 In both singular solutions large investments are made initially so that capital 

stocks reach the path. Once on the path the level of investment increases until an inflection 

point is reached. At this point investment in capital begins to fall until investment just replaces 

depreciation at the steady state. Additionally, while initially investment is focused on 

adaptation after a certain point, when the amount of investment begins to fall it becomes more 

focused in prevention. This is shown in Figure 3, and is a result of our choice of hazard function, 

where prevention becomes relatively more effective as the probability of an outbreak 

increases. This is an example of our theoretical results, where an increase in the relative 

marginal benefit of prevention capital leads to a substitution towards investment in prevention. 

 The expected value of benefits on both paths were evaluated by deriving a Skiba 

threshold given by (32) (Mäler et al., 2004; Skiba, 1978). This involved evaluating the expected 

damages of both paths at every point. The second singular solution ($4.297 billion, $2.174 

billion) always dominates the first, so that even if a policymaker begins on the optimal path for 

the first singular solution they would prefer to make investments in the capital required to 

switch paths.  

 Figure 4 also shows a comparative dynamic result for an increase in the depreciation 

rate for both adaptation and prevention capital stocks, which are increased from 𝛿 = 𝜁 = .05 

to 𝛿 = 𝜁 = .075. We compare investment in the capital stocks with our baseline case. The first 

panel in Figure 4 shows that the higher depreciation rate leads to overall lower stocks of both 
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kinds of capital, so that less permanent investments lead to more money being spent just on 

replacing depreciation. In the second panel there is more investment in adaptation capital even 

to maintain the lower capital stock. There is simultaneously less investment in prevention 

capital, leading to the much lower capital stock. This change in the mixture of investment can 

be seen in the third panel where the mixture of investment shifts towards adaptation along the 

entire path. The shorter lived we consider capital stocks to be, the more investment should 

shift towards only adaptation capital. If the increase in depreciation rates is large enough, 

investment should only be made in adaptation capital. 

3.3 Partial singular solution, only prevention capital 

 Partial singular solutions are defined as when investment is on only one singular arc, 

and the other capital stock is set equal to zero. When it is only optimal to invest in prevention 

capital the stock of prevention capital evolves as shown in Figure 2. A large initial investment is 

required first to build up the capital stock and get on the optimal path of prevention capital. As 

the risk increases, the flow of investment also increases above the depreciation rate. This 

causes the stock to grow over time as risk increases, until it reaches its steady state level of 

$17.535 billion. The expected damages of a pandemic from the initial point where risk is 

negligible over the entire path is equal to $176.63 billion. This increased expected value of the 

system leads to initial savings of $2.323 trillion.  

3.4 Partial singular solution, only adaptation capital 

The time paths of the background probability of outbreak, adaptation capital and 

investment in adaptation capital are shown in Figure 4. When policymakers decide to only 

invest in adaptation capital, the expected value of the system is $83.32 billion. This implies 

savings of $2.416 trillion6 at the initial point from higher expected GDP into eternity.  In this 

case, the stock of adaptation capital is initially built up with an impulse of investment, and then 

increases through a flow of investment that is above what is required to replace depreciation, 

                                                           
6 These savings are significantly higher than investing only in prevention. This is due to the delayed nature of 

benefits from prevention capital. Adaptation capital impacts the damages from a pandemic, which have a constant 

unmitigated level. Prevention capital impacts the hazard rate, which is increasing over time but initially low. This 

means that prevention is initially riskier, because its some of its benefit does not occur until after the hazard rate has 

risen. (Finnoff et al., 2007). 
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until it reaches the steady state level of $15.998 billion when the background probability of a 

pandemic reaches the steady state level of .1.  

3.5 Singular vs bang-bang solutions 

A brief analysis of the choice between singular and bang-bang solutions is included to 

consider the optimality of alternative solutions, where investments are made at some 

maximum rate. For this analysis, investment in either adaptation or prevention is made at the 

boundary levels 𝑎̅ and/or 𝑛̅, which assumed to be $200 billion7. When investing in both 

prevention and adaptation at the same time, it is possible to spend $400 billion total.  The 

expected net benefits for three cases were derived using (18) above. In order to be comparable, 

they were derived at the same initial risk as the singular paths. The three cases considered 

include when investments are made in both capital stocks, when investment is only made in 

prevention, and finally when investment is only made in adaptation. All three cases involve the 

capital stocks approaching a steady state level and then remaining there indefinitely. These 

steady state levels are defined as 𝐴̅ =
𝑎̅

𝜁
 and 𝑁̅ =

𝑛̅

𝛿
, respectively. 

The expected value of these paths as well as the singular solutions is included in Table 2. 

The singular solutions are always preferable to the bang-bang solutions, as they have lower 

present values of expected damages. Further, it is optimal to invest in both risk mitigation 

strategies as this solution has the lowest expected present value of damages.. It is possible that 

policymakers find themselves constrained to a smaller control set, and are able to invest either 

only domestically (adaptation capital) or only overseas (prevention capital). This can be due to 

misconceptions of the risk, such as voters believing pandemics only occur in poorer countries 

and thus investment should be overseas, or political constraints such as voters not wanting 

their money to be spent on noncitizens. Our results would suggest that being constrained to 

domestic investment is less damaging. Taking into account political considerations, we do have 

evidence that even in the double singular solution where investment is heavily skewed to 

adaptation the small increase in prevention leads to large savings. This is shown by the 

difference between the inferior singular solution and the adaptation only partial singular 

                                                           
7 Sensitivity analysis on the boundary was performed, and analytically the results remain the same, while the exact 

difference between the singular and maximum investment paths may differ slightly.    
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solution, where moving to the inferior singular solution leads to an additional $3 billion in 

savings from lower expected damages. If investment is non-recoverable, or the required 

increase in prevention capital is too costly, it may still be optimal to remain in the partial 

singular solution and avoid switching costs. Regardless of the choice to switch, investing at a 

singular solution level is always preferable to investing at some upper bound. A sensitivity 

analysis of the upper boundary chosen was performed, and this result is not sensitive to the 

boundary chosen. Intuitively, the cure can be worse than the disease if nations overspend on 

risk mitigation, as those resources could be put to better use elsewhere. 

4. Discussion 

 There are two main strategies for controlling the risk of pandemics to the United States. 

It is possible to either invest in prevention to make pandemics less likely to occur, or instead in 

adaptation to reduce the damages of a pandemic. The relative returns to these two strategies 

depend on the technologies available to policymakers as well as the level of damages and risk 

faced by managers. This paper has explored the trade-offs between two methods of risk 

reduction and their respective cost savings. While a combination of risk reduction strategies can 

lead to the greatest savings, there is a possibility that governments face political constraints 

when deciding how to invest in risk mitigation. Given the geographic distinction between 

adaptation and prevention capital, our work implies a self-interested US policymaker should 

invest sums in healthcare abroad that are comparable to the investments made domestically. If 

that policymaker is constrained to investment only in the United States, there are significant 

savings from extending programs overseas, or shifting existing investment abroad. 

 The United States and global community already make investments in public and 

veterinary health. The current world health capital stock can be thought of to consist of public 

health systems in all developing countries, and has a value of $450 million (World Bank, 2013). 

Our estimates for optimal investment in this global stock are in line with previous work, which 

has predicted a cost of $3.4 billion yearly to bring all systems up to minimum international 

standards (World Bank, 2013). Estimates by the Global Health Risk Framework Commission call 

for an incremental $4.5 billion per year in spending for what we refer to health capital (Gostin 
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et al., 2016). We also find much larger savings due to investing in these mitigation strategies, 

because our work takes into account the increasing nature of risk. Repeating our analysis using 

the WHO estimates of risk (1% annually (Jonas, 2013) of a $3 trillion outbreak) we find expected 

savings of $1.3 trillion when taking into account the recurring nature of the risk. We also find 

that when taking into account only the incentives of the United States to invest as a form of 

prevention, it should be spending less than the $3.4 billion necessary to entirely mitigate the 

risk, due in part to its ability to mitigate the domestic consequences of a pandemic. This reflects 

the global public good nature of international health systems, and suggests noncooperative 

investment as a natural and important extension of this work. 

For domestic adaptation capital, the National Institute for Allergies and Infectious 

Disease has a budget of $4.7 billion in 20168, targeted toward research and development for 

new therapies, vaccines, diagnostic techniques and technologies. This can be thought of as 

attempts to reduce the background hazard rate. The clearest analogy to prevention capital is 

the Centers for Disease Control and Prevention (CDC) which had a budget of $699 million in 

2016 for combating emerging and zoonotic infectious disease, up from $405 million in 2015, in 

part in response to the threat of Ebola. The response to Ebola has been criticized for being slow 

and inefficient, allowing the outbreak to persist and expand (Heymann et al., 2015), although it 

is likely that the existing institutions reduced the impact of the disease relative to the case 

where each nation was left to fend for itself. The CDC also has $448 for Global Health, and 

$1.382 billion for Public Health Preparedness and Response in 20169. This capital is split 

between domestic and international activities, but is of the same magnitude as our estimates. 

Our results suggest that these investments should be increased, and that there is room for 

larger investments both domestically and internationally, however relatively more of increased 

investment should be made domestically, when ignoring the benefits accruing overseas. 

We also find that when investments are made at their optimal level, the expected 

damages from a pandemic rival those from the ‘mild’ 2009 influenza pandemic. In our optimally 

controlled singular solution, expected damages from a pandemic are $49.15 billion, similar in 

                                                           
8 https://officeofbudget.od.nih.gov/pdfs/FY17/31-Overview.pdf 
9 http://www.hhs.gov/about/budget/budget-in-brief/cdc/index.html#a4 
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magnitude to the actual damages from the 2009 pandemic of ~$72 billion. This suggests that 

large prevention and adaptation capital stocks, built in response to the 2003 SARS outbreak, 

helped mitigate the 2009 pandemic. Optimal investment in both prevention and adaptation 

capital stocks could lead to even more savings in the future. These investments should only 

increase as the risk of pandemics increases due to globalization, urbanization, and human 

behavior as well as climate change. Additionally, these investments should be maintained 

between outbreaks to avoid allowing outbreaks to become out of control. 

While our work is focused on influenza, there has been a recent influx of vector-borne 

viral diseases to the Western Hemisphere, with the most recent being the Zika virus (Fauci and 

Morens, 2016). Zika has now circled the globe and been tied to terrible health consequences, 

causing it to be declared a Public Health Emergency in February 2016 (Fauci and Morens, 2016; 

WHO, 2016). The WHO response has included work on coordination, surveillance, caring for 

infected individuals, vector control and community engagement, as well as research on the 

outbreak – the functions of our prevention capital stock (or adaptation, if Zika reaches the 

United States). Existing capital and coordination efforts allowed for this rapid response, even 

though it required the WHO and World Bank Group to provide a temporary flow of funding 

(WHO, 2016). These efforts are vital, as there are no Zika vaccines in advanced development, 

and epidemics appear randomly so that preemptive vaccination makes little sense, and reactive 

vaccination is too slow (Fauci and Morens, 2016). It is likely that Zika virus will not be as 

damaging as it otherwise would have been, given the international response and existing 

organizations such as GOARN and the WHO that are available for international coordination 

and response. The seemingly increasing pace of emergence for these diseases implies that the 

background risk to any one nation is also rising. Our analysis suggests that nations should 

respond by increasing investment in both their domestic capital and their efforts to fight 

disease elsewhere. It also suggests that if prevention is becoming relatively more efficient, the 

relative balance of prevention and adaptation should shift towards international efforts. 

 Investments in risk mitigation, whether domestic or international, are insurance against 

the threat of pandemics to the United States, omitting any other benefits to other nations. 

These investments in the two strategies must change as the risk increases, with the overall 
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capital stock rising in response to the risk, and the mixture of strategies also responding. This 

analysis provides insight into the role of an increasing risk of outbreak, and the anthropogenic 

forces that drive the risk of disease outbreak which must be considered when determining the 

optimal mix of mitigation strategies. Even ignoring humanitarian benefits, international public 

health aid provides insurance to the United States against the threat of pandemics. 
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Figure Captions 

Figure 1. Panel (a) shows the steady state curves for combinations of adaptation and 

prevention capital (solid curves). The two possible optimal paths are also shown to the 

candidate singular solution steady states, ss1 and ss2 (dashed lines). It is important to note that 

on the optimal paths the probability of a pandemic outbreak is increasing, while on the steady 

state curves the probability is held constant at the steady state level. The steady states when 

investing only in one capital stock (setting the alternative to zero) are shown in panel (b). 
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Figure 2. Prevention capital is the dashed line, adaptation capital is the solid line. Thick lines are 

the dominant singular solution (labelled ss2), thin lines are the inferior singular solution 

(labelled ss1). First figure is stock, both increasing to the steady state. The second figure is 

investment over risk, increasing to inflection point then following. Third figure is relative mix of 

adaptation and prevention. Starting at lower left point, increasing and then falling back with 

slightly more prevention. 
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Figure 3. Figure 3 shows the relative mix of investment in adaptation and prevention capital 

over the time path to either steady state ss1 or ss2. 
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Figure 4. Figure 4 shows the optimal paths of investment and capital stocks, as well as the 

relative mix of investment in adaptation and prevention capital over the time path. Thin lines 

are paths with higher depreciation rates. 
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Table 1. Parameters used in numerical exercises. 

Parameter Definition Value or functional form 

𝑐𝑛 Effectiveness of prevention capital .015 

𝑐𝑎 Effectiveness of adaptation capital .0072 

𝐷(𝐴)

𝑟
 

Value of optimally controlled ex-post 

system 
−

𝐷̂

1 + 𝑐𝑎𝑁(𝑡)
 

𝜓(𝑁(𝑡), 𝑏(𝑡)) Hazard function 𝑏(𝑡)

1 + 𝑐𝑛𝑁(𝑡)
 

𝛿 Depreciation rate of prevention capital .05 

𝜁 Depreciation rate of adaptation capital .05 

𝐷̂ Damages without adaptation capital  $3,000,000 (millions) 

𝑟 Discount rate .01 

𝑏̅ Steady state probability of outbreak .1 

𝑏̇(𝑡) State equation for steady state 

probability of outbreak 
𝑏(𝑡) ∗

1 − 𝑏(𝑡)

𝑏̅
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Table 2. Initial welfare savings from investing in mitigation strategies, steady state capital stocks 

and per period expenditure in the steady state. By investing in a combination of prevention and 

adaptation capital, it is possible to save a greater amount with a significantly smaller level of 

total investment. For welfare analysis it is assumed when one control is set at an extreme and 

the other at the singular arc, that extreme is no capital stock. 

Strategy Expected 

Damages 

Initial savings Steady state 

capital stock 

No control $2.5 trillion 0 0 

Prevention 

only 

$176.63 billion $2.323 trillion $17.535 billion 

Adaptation 

only 

$83.32 billion $2.416 trillion $15.998 billion 

Both 

Ss1 

$52.39 billion $2.448 trillion $8.093 billion 

Adaptation 

$505 million 

Prevention 

Both 

Ss2 

$49.15 billion $2.451 trillion $4.297 billion 

Adaptation 

$2.174 billion 

Prevention 

Boundary 

Prevention 

$20.1 trillion N/A $400 billion 

 

Boundary 

Adaptation 

$3.76 trillion N/A $400 billion 

 

Boundary 

Both 

$4.03 trillion N/A $400 billion 

Adaptation 

$400 billion 

Prevention 

 




